
TUTORIAL (/BROWSE?CATEGORIES=["7"])

1 like

(mailto:?subject=Call%20an%20operationalized%20Microsoft%

20Cognitive%20Toolkit%20model%20from%20an%20Android%

20app&body=Check%20out%20this%20link%3A%20https%3A%2F%

2Fgallery.cortanaintelligence.com%2FTutorial%2FCall-an-operationalized-

Microsoft-Cognitive-Toolkit-model-from-an-Android-app)

Call an
operationalized Microsoft
Cognitive Toolkit model from an
Android app
By Don Glover (Zensa Inc) (/Home/Author?

authorId=125F0BE444D9B711F04C1CA68EDBD68256991DE1EE19B2836A81DFDCAA6E9411) for

Microsoft (/Home/Author?authorId=72f988bf86f141af91ab2d7cd011db47) • April 6, 2017

Page 1 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



1304 views

RELATED ITEMS

See all related items (/browse?s=Call an operationalized Microsoft Cognitive Toolkit model from an
Android app)

RELATED LINKS

TAGS

Report Abuse

Add to Collection (/Home/SignIn)

Cognitive Toolkit Evaluation on Azure
(/Tutorial/Cognitive-Toolkit-Evaluation-on-Azure)

by Microsoft (/Home/Author?authorId=72f988bf86f141af91ab2d7cd011db47)TUTORIAL

Cognitive Toolkit 203: Reinforcement Learning Basics
(/Tutorial/Cognitive-Toolkit-203-Reinforcement-Learning-Basics)

by Microsoft (/Home/Author?authorId=72f988bf86f141af91ab2d7cd011db47)TUTORIAL

Cognitive Toolkit Tutorial: Getting Started
(/Tutorial/Cognitive-Toolkit-Tutorial-Getting-Started)

by Microsoft (/Home/Author?authorId=72f988bf86f141af91ab2d7cd011db47)TUTORIAL

Summary

This sample shows

you how to deploy a pretrained Microsoft Cognitive Toolkit image classification

model (Resnet) as a real-time web service. You will then write a mobile app that

can take a picture and pass it to the service for classification.

Description

Once you have deployed the model as a web service and built the mobile app you

should get results similar to those shown in the following image:

Page 2 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



Page 3 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



 

To complete the sample, you will use the following tools and environments:

• Microsoft Visual Studio 2017 with the Xamarin extension. If do not have Visual

Studio installed, you can install the free community edition

(https://www.visualstudio.com/downloads/).

• Linux Data Science Virtual Machine. For more information on Data Science VMs,

see Introduction to the cloud-based Data Science Virtual Machine for Linux and

Windows (https://docs.microsoft.com/en-us/azure/machine-learning/machine-

learning-data-science-virtual-machine-overview).

• Azure ML CLI for operationalization (http://aka.ms/o16ncli)

• To test the mobile app, either an emulator that can access your web cam or an

android phone set up in developer mode. For more information on setting up

your debugging environments, see Android SDK Emulator

(https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/debug-

on-emulator/android-sdk-emulator/) and Set Up Device for Development

(https://developer.xamarin.com/guides/android/getting_started/installation/set_up_device_for_development/)

Provision a Linux DSVM

For information on provisioning a DSVM, see Provision the Linux Data Science Virtual

Machine (https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-

data-science-linux-dsvm-intro).

Once the DSVM is provisioned, note the IP address. You will use it to sign in to the

DSVM to configure it and to call the web service you are creating.

Note: The information in this document pertains to DSVMs provisioned after February

1st, 2017.

To configure the AML CLI environment sign into the DSVM, run the following

commands and follow the prompts:

$ wget -q http://amlsamples.blob.core.windows.net/scripts/amlupdate.sh -O - | sudo

bash -

$ sudo /opt/microsoft/azureml/initial_setup.sh

Important: You must log out and log back in to your SSH session for the changes to

take effect.

Next, enter the AML environment setup command.

Note: The following items are important when completing the environment setup:

• Enter a name for the environment. Environment names must be 20 or fewer

characters in length and can only consist of numbers and lowercase letters.

Page 4 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



• You will be prompted to sign in to Azure. To sign in, use a web browser to open

the page https://aka.ms/devicelogin (https://aka.ms/devicelogin) and enter the

provided code to authenticate.

• During the authentication process, you are prompted for an account to

authenticate with. Use the account under which you created the DSVM.

• When the sign in is complete, your subscription information is presented, and you

are prompted whether you wish to continue with the selected account.

Environment setup command:

$ az ml env setup

Once the setup command has finished, it outputs environment export commands for

the AML CLI environment. It also saves these export commands to a file in your home

directory. Source the file to set up your environment variables:

$ source ~/.amlenvrc

To always set these variables when you log in, copy the export commands into

your .bashrc file:

$ cat < ~/.amlenvrc >> ~/.bashrc

Operationalize the Image Classification Model

For this sample, you are using a pretrained Cognitive Toolkit imagine classification

model (Resnet). To Operationalize the model, you use the Azure Machine Learning

service create command and supply three files:

• A model file.

• A driver file which contains functions to initialize and run the web service. The

initialization function loads the model and defines the inputs and outputs. The

run function takes the input as a JSON object and passes it to the web service.

• A resource file that contains text identifying classifications of the images.

The files for the sample were created for a blog post

(https://github.com/ilkarman/Blog/blob/master/rndm/ACS%20Deploy.ipynb) by Ilia

Karmanov, a Data Scientist with Microsoft.

From the blog post, download the following files:

• The model file: https://migonzastorage.blob.core.windows.net/deep-

learning/models/cntk/imagenet/ResNet_152.model

Page 5 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



(https://migonzastorage.blob.core.windows.net/deep-

learning/models/cntk/imagenet/ResNet_152.model)

• The Resource file: https://ikcompuvision.blob.core.windows.net/acs/synset.txt

(https://ikcompuvision.blob.core.windows.net/acs/synset.txt)

• The driver file: https://ikcompuvision.blob.core.windows.net/acs/driver.py

(https://ikcompuvision.blob.core.windows.net/acs/driver.py)

You must update the driver file to reference the correct model.

Update the load model call to load the ResNet_152 model as follows:

trainedModel = load_model('ResNet_152.model')

The _152 model uses larger images for the training and classification.

Next you will operationalize the model as a web service to which you can submit

images for classification:

1. Sign in to the DSVM and navigate to the notebooks>azureml folder.

2. Create a new folder named cntkservice.

3. Open the folder and upload the ResNet_152.model, synset.txt, and driver.py file.

4. From the command line, navigate to the notebooks> azureml>cntkservice folder.

5. Run the following commands create the local real-time web service based on the

model and uses the cntk run-time:

1. az ml env local

2. az ml service create realtime -r cntk-py -f driver.py -m ResNet_152.model -d

synset.txt -n cntkservice.

Once the aml create command has completed, the CLI displays information that shows

you how to call the service locally. From this, you need to note the port number.

You can verify that your service is running the following command:

az ml service list

To test the web service you can run the aml service run command and supply it with

the base64 representation of an image to compare.

az ml service run realtime -n cntkservice -d '{"input": "[\"<base64 image represent

ation>\"]"}'

A sample image that you can use is of a British Airways Airbus 380

(https://www.britishairways.com/assets/images/information/about-ba/fleet-

facts/airbus-380-800/photo-gallery/240x295-BA-A380-exterior-2-high-res.jpg).

You can convert it to a base64 representation using the services at imagetobase.com

Page 6 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



 

(http://imagetobase64.com/).

Open the port on the DSVM

To call the web service from the mobile app, you must open the port on DSVM to

incoming and outgoing internet traffic.

To open the port on DSVM:

1. Sign into the Azure portal (https://portal.azure.com).

2. Open the Network group for your DSVM.

3. Add the port to the rules.

For complete instructions on opening ports on an Azure VM, see Opening ports to a

VM in Azure using the Azure portal (https://docs.microsoft.com/en-us/azure/virtual-

machines/windows/nsg-quickstart-portal),

Build the mobile app

For this sample, you are going to start from the Xamarin sample Take a Picture and

Save Using Camera App

(https://github.com/xamarin/recipes/tree/master/android/other_ux/camera_intent/take_a_picture_and_save_using_camera_app)

found in the Xamarin sample repository on GitHub.

For more information on the sample, see the commentary in Take a Picture and Save

Using Camera App

(https://developer.xamarin.com/recipes/android/other_ux/camera_intent/take_a_picture_and_save_using_camera_app/)

in the Xamarin documentation.

Download the sample app from GitHub and open the solution in Visual studio and

make the following additions and changes to the code to call the web service.

You can download the completed code (https://aka.ms/cntkimg) from the samples

folder in the Machine Learning Operationlization GitHub repository.

Call the classification web service

Add the following method to call the classification web service. The method resizes the

bitmap since there is a limitation on the amount of data that can be sent to the web

service. Internally, the classification model further resizes the image to 224 by 224 for

analysis. It then converts image to its base64 representation, constructs the request,

and sends it to the web service.

Page 7 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



private async void classifyImage()

{

if (App.bitmap != null)

{

// Resize the bitmap so that it is small enough to upload to the web se

rvice

Bitmap bitmap = App.bitmap;

Bitmap bitmapScaled = Bitmap.CreateScaledBitmap(bitmap, 360, 262, tru

e);

MemoryStream stream = new MemoryStream();

bitmapScaled.Compress(Bitmap.CompressFormat.Jpeg, 100, stream);

// Convert it to base64 string

byte[] bitmapArrayImage = stream.ToArray();

string bitmapArrayImageStr = Convert.ToBase64String(bitmapArrayImage);

// Construct the json request body. Note that the quotes surrounding th

e

// base64 data must be escaped.

string jsonRequest =

String.Format(@"{{ ""input"":""[\""{0}\""]"" }}", bitmapArray

ImageStr);

// Send the request

string json = await FetchAsync.CallWebService("POST",

"http://<your host address>:<your service port>", jsonR

equest);

// Once the call returns with data, display it.

if (json != null)

{

TextView tv = FindViewById<TextView>(Resource.Id.resultsText);

tv.Text = json;

}

}

else

{

TextView tv = FindViewById<TextView>(Resource.Id.resultsText);

tv.Text = "No image to classify.";

}

}

Update the call to FetchAsync.CallWebService to reference your DSVM and the port

on which your web service is accepting requests.

To support the call to the web service, there a few additional updates you must make to

the sample code.

Modify the UI

In the resources>layout>Main.axml file, after the myButton declaration, add markup for

Page 8 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



a button to call the classification web service.

<Button

android:id="@+id/classifyImageButton"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Classify Image" />

After the ImageView declaration, add a text view field to display the results.

<TextView

android:id="@+id/resultsText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text=""/>;

Update the MainActivity

In MainActivity.cs, add the following using statement to support .NET IO calls:

using System.IO;

To address conflicts between the .NET and Java IO resources, remove the following

using statement.

using Java.IO;

Next, add explicit Java.io resource references to the file definitions in App class.

public static class App

{

public static Java.IO.File _file;

public static Java.IO.File _dir;

public static Bitmap bitmap;

}

Add explicit resource references to the file creation calls in

CreateDirectoryForPictures and TakeAPicture methods.

Page 9 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | Azu...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



private void CreateDirectoryForPictures()

{

App._dir = Java.IO.File(

Environment.GetExternalStoragePublicDirectory(

Environment.DirectoryPictures), "CameraAppDemo");

if (!App._dir.Exists())

...

private void TakeAPicture(object sender, EventArgs eventArgs)

{

Intent intent = new Intent(MediaStore.ActionImageCapture);

App._file = new Java.IO.File(App._dir, String.Format("myPhoto_{0}.jpg", Guid.Ne

wGuid()));

...

In the OnActivityResult method, comment out the line which sets the stored bitmap

to null, you are going to keep the bitmap around so that you can send it to the

classification web service.

if (App.bitmap != null) {

_imageView.SetImageBitmap (App.bitmap);

//App.bitmap = null;

}

To wire up the classify button to call the classification method, add the following lines

in the OnCreate method:

Button button2 = FindViewById<Button>(Resource.Id.classifyImageButton);

button2.Click += delegate { classifyImage(); };

Finally, to call the web service, you must add code to make http calls.

Add a new class file called callwebservice and add the following code:

Page 10 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | A...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



using System;

using System.Text;

using System.Threading.Tasks;

using System.Net;

using System.IO;

namespace CameraAppDemo

{

public static class FetchAsync

{

public static async Task<string> CallWebService(string verb, string url, st

ring requestBody = "")

{

string jsonDoc = "";

// Create an HTTP web request using the URL:

HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(new Uri

(url));

request.Method = verb;

if (requestBody != "")

{

request.ContentType = "application/json";

ASCIIEncoding encoding = new ASCIIEncoding();

byte[] data = encoding.GetBytes(requestBody);

request.ContentLength = data.Length;

Stream myReqStream = null;

try

{

myReqStream = request.GetRequestStream();

myReqStream.Write(data, 0, data.Length);

myReqStream.Close();

}

catch (Exception e)

{

Console.Write(e.Message);

}

}

try

{

using (WebResponse response = await request.GetResponseAsync())

{

if (response.ContentLength > 0)

{

// Get a stream representation of the HTTP web response:

using (Stream stream = response.GetResponseStream())

{

// Use this stream to build a JSON document object:

jsonDoc = await Task.Run(() =>

{

byte[] bytes = new byte[response.ContentLength + 1

Page 11 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | A...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



0];

int numBytesToRead = (int)response.ContentLength;

int numBytesRead = 0;

do

{

// Read may return anything from 0 to 10.

int n = stream.Read(bytes, numBytesRead, 10);

numBytesRead += n;

numBytesToRead -= n;

} while (numBytesToRead > 0);

return System.Text.Encoding.Default.GetString(byte

s);

});

}

}

}

}

catch (WebException e)

{

Console.Write(e.Message);

}

return jsonDoc;

}

}

}

0 Comments Cortana Intelligence Gallery Login1

Share⤤ Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Privacy�

Recommend

Page 12 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | A...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...



FAQ (http://azure.microsoft.com/en-us/documentation/articles/machine-learning-faq/) Privacy and Cookies

(http://www.microsoft.com/privacystatement/en-us/core/default.aspx) Terms of Use

(http://azure.microsoft.com/en-us/support/legal/) © Microsoft

Page 13 of 13Call an operationalized Microsoft Cognitive Toolkit model from an Android app | A...

1/3/2018https://gallery.cortanaintelligence.com/Tutorial/Call-an-operationalized-Microsoft-Cogn...


